Herpesvirus assembly and egress.
نویسنده
چکیده
Herpesvirus particles consist of four morphologically distinct structures, the core, capsid, tegument, and envelope. The inner nucleoprotein core comprising the linear double-stranded DNA genome is included in an icosahedral (T 16) capsid shell of 150 hexons and 12 pentons. The capsid is surrounded by a layer of proteinaceous material designated the tegument which, in turn, is enclosed in an envelope of host cell-derived lipids containing virus-encoded (glyco)proteins. Whereas capsid formation in the nuclei of infected cells is understood in some detail, the mechanisms of tegumentation and envelopment and the intracellular compartments involved have long been disputed. This review focuses on recent findings that demonstrate a rather complex process of herpesvirus maturation including primary envelopment of capsids by budding at the inner leaflet of the nuclear membrane and translocation of capsids into the cytoplasm after loss of the primary envelope by fusion with the outer leaflet of the nuclear membrane. Subsequently, final tegumentation occurs in the cytoplasm and tegumented capsids obtain their final envelope by budding into vesicles of the trans-Golgi network. Tegumentation and envelopment are driven by specific protein-protein interactions that appear, at least in cultured cells, to exhibit a remarkable redundancy.
منابع مشابه
A physical link between the pseudorabies virus capsid and the nuclear egress complex.
Following their assembly, herpesvirus capsids exit the nucleus by budding at the inner nuclear membrane. Two highly conserved viral proteins are required for this process, pUL31 and pUL34. In this report, we demonstrate that the pUL31 component of the pseudorabies virus nuclear egress complex is a conditional capsid-binding protein that is unmasked in the absence of pUL34. The interaction betwe...
متن کاملHuman Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellul...
متن کاملThe A, B, Cs of Herpesvirus Capsids
Assembly of herpesvirus nucleocapsids shares significant similarities with the assembly of tailed dsDNA bacteriophages; however, important differences exist. A unique feature of herpesviruses is the presence of different mature capsid forms in the host cell nucleus during infection. These capsid forms, referred to as A-, B-, and C-capsids, represent empty capsids, scaffold containing capsids an...
متن کاملCharacterization of herpes simplex virus type 1 L-particle assembly and egress in hippocampal neurones by electron cryo-tomography
Visualizing virus-host interactions in situ inside infected cells by electron cryo-tomography provides unperturbed snapshots of the infection process. Here we focus on the assembly and egress pathway of herpesviruses. Cells infected with herpes simplex virus 1 produce and release not only infective virions but also non-infectious light particles (L-particles). L-particles are devoid of viral ca...
متن کاملHuman Cytomegalovirus Tegument Protein pUL71 Is Required for Efficient Virion Egress
The human cytomegalovirus virion is composed of a DNA genome packaged in an icosahedral capsid, surrounded by a tegument of protein and RNA, all enclosed within a glycoprotein-studded envelope. Achieving this intricate virion architecture requires a coordinated process of assembly and egress. We show here that pUL71, a component of the virion tegument with a previously uncharacterized function,...
متن کاملExocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms
UNLABELLED Many molecular and cell biological details of the alphaherpesvirus assembly and egress pathway remain unclear. Recently we developed a live-cell fluorescence microscopy assay of pseudorabies virus (PRV) exocytosis, based on total internal reflection fluorescence (TIRF) microscopy and a virus-encoded pH-sensitive fluorescent probe. Here, we use this assay to distinguish three classes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2002